Nature-inspired Intelligent Techniques for Pap Smear Diagnosis: Ant Colony Optimization for Cell Classification

نویسندگان

  • Yannis Marinakis
  • George Dounias
چکیده

During the last years, Nature Inspired Intelligent Techniques have been very attractive. In this paper, one of the most important Nature Inspired Intelligent Techniques, the Ant Colony Optimization (ACO), is presented for the solution of the Pap Smear Cell Classification problem. ACO is derived from the foraging behaviour of real ants in nature. The main idea of ACO is to model the problem as the search for a minimum cost path in a graph. Artificial ants walk through this graph, looking for good paths. Each ant has a rather simple behaviour so that it will typically only find rather poor-quality paths on its own. Better paths are found as the emergent result of the global cooperation among ants in the colony. This algorithm is combined with a number of nearest neighbor based classifiers. The algorithm is tested in two sets of data. The first one consists of 917 images of Pap smear cells and the second set consists of 500 images, classified carefully by cyto-technicians and doctors. Each cell is described by 20 features, and the cells fall into 7 classes but a minimal requirement is to separate normal from abnormal cells, which is a 2 class problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Applications of Nature-Inspired Intelligence in Finance

A great variety of complex real-life problems can be sufficiently solved by intelligent nature-inspired methods which can be considered part of artificial or computational intelligence. These newly introduced techniques have proven their important role on many successful implementations, mostly related to optimization problems. The basic reason for their success is that they imitate the way tha...

متن کامل

Analysis of Pap-smear Image Data

The pap-smear benchmark database provides data for comparing classification methods. The data consists of 917 images of pap-smear cells, classified carefully by cyto-technicians and doctors. The classes are difficult to separate, since class membership is not clearly defined. A basic data analysis provides numerical measures indicating how well the classes are separated, based on the Mahalanobi...

متن کامل

New Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem

Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...

متن کامل

Solving Complex Problems in Human Genetics using Nature-Inspired Algorithms Requires Strategies which Exploit Domain-Specific Knowledge

In human genetics the availability of chip-based technology facilitates the measurement of thousands of DNA sequence variations from across the human genome. The informatics challenge is to identify combinations of interacting DNA sequence variations that predict common diseases. The authors review three nature-inspired methods that have been developed and evaluated in this domain. The two appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006